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Introduction - LIX contributions so far

o BERTweetFR [1], a LLM for French tweets
o JuriBERT [2], a model for French legal text
@ SUMM'RE project on meeting summarisation [3]

@ BARThez [4], a 165M parameters LLM for French that excels at generative
tasks

e AraBART [5], a 139M monolingual pre-trained model for Arabic language
o GreekBART [6], a 181M parameters LLM for Greek language

@ FrugalScore [7]: A data-free Knowledge Distillation approach for NLG
evaluation metrics (retaining 96.8% of the performance, running 24 times
faster, and having 35 times less parameters than the original metrics).
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Issues with LLMs I

e i.e., inference on BLOOM-176B, need 8x80GB A100 GPUs ( $15k each).
fine-tune BLOOM-176B, need 72 of these GPUs!!

Need to reduce these requirements while preserving the model’s performance.

@ Possible solutions: knowledge distillation, quantization

Thttps://cloud.google.com/tpu/docs/bfloat16
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Knowledge Distillation |

@ A small model (the student) is trained to mimic the predictions of a much
larger pre-trained model (the teacher) [8]-[11]

o In distillation, knowledge is transferred from teacher model to the student by
minimizing a loss function

@ Target: student learns the distribution of class probabilities of the teacher
model.
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Knowledge Distillation

Knowledge Distillation [l

Teacher Model
(large neural network)

/\glolofiely/ e | 2
j Loss J
Student Model

|

f

07 W
Vi 1'\""
lo9
o A
PN L]
™Y

Figure: A simplified representation of Knowledge Distillation framework (Source: https:
//towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764)

lakovos Evdaimon, Yanzhu Guo, Michalis Vazirgiannis October 11, 2023


https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

Why Knowledge Distillation?

@ Faster Inference and Lower Latency. Distilled models allow for quick
decision-making, enhancing user experience.

@ Distilled models often generalize better to unseen data due to the
regularization effect of distillation [12].

@ Improved Performance on Small Devices with limited computational
resources. Knowledge distillation enables loT devices to perform complex
tasks.

@ Reducing the carbon footprint
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Knowledge Distillation

Types of Knowledge |

Response-Based Knowledge

@ Refers to the neural response of the last output layer of the teacher model.
@ The main idea is to directly mimic the final prediction of the teacher model.

Response-Based Knowledge Distillation
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Figure: Representation of Response-Based Knowledge
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Knowledge Distillation

Types of Knowledge Il

Feature-Based Knowledge

@ The main idea is to directly match the feature activations of the teacher and
the student.

Feature-Based Knowledge Distillation
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Figure: Representation of Feature-Based Knowledge
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Types of Knowledge Il

Relation-Based Knowledge

@ Both response-based and feature-based knowledge use the outputs of specific
layers in the teacher model.

@ Relation-based knowledge further explores the relationships between different
layers or data samples.
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Figure: Representation of Relation-Based Knowledge
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Knowledge Distillation

Training Process Overview

@ Knowledge Transfer: The student model learns from the teacher’s outputs,
aiming to replicate its behavior.

o Fine-tuning: After knowledge transfer, the student model is fine-tuned on the
task-specific dataset.

October 11, 2023
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Knowledge Distillation Techniques |

o Offline Distillation: The knowledge is transferred from a pre-trained teacher
model into a student model.

e The teacher is pre-trained before the distillation.

e The knowledge is extracted from the teacher model in the forms of logits or
intermediate features, which are then used to guide the training of the student
model.

@ Online Distillation: Both the teacher and the student are updated
simultaneously and the whole knowledge distillation framework is end-to-end
trainable.

o Self-Distillation: The same networks are used for the teacher and the
student models. One way to apply self-distillation is to transfer knowledge
from the deeper sections of the network into its shallow sections.
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Knowledge Distillation
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State of the Art

o DistilBERT [14]
o Distilled GPT-3.5 for source code summarization [15]

e MiniLLM [16]
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DistilBERT

@ A 40% smaller BERT model pre-trained leveraging knowledge distillation via
the supervision of BERT-base model.

@ Retaining 97% of BERT-base model's language understanding capabilities
and being 60% faster.
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Figure: lllustration of knowledge distillation during the pre-training of DistilBERT
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Distilled GPT

@ A distilled GPT-3.5 model for a specific task, the source code summarization.

@ The model is small enough (350M parameters, so 0.2% of the GPT-3.5 in
terms of parameters number) to be run on a single 16 GB GPU (can be run
locally).

@ Capable of mimicking GPT-3.5 on this task. Based on the conducted human

evaluation a slight preference favoring GPT-3.5 in direct comparisons by
participants (52% GPT-3.5, 46% distilled, 2% undecided)
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MiniLLM |

Support for multiple LLMs (currently LLAMA, BLOOM, OPT) at various
model sizes (up to 170B parameters)

o It distills smaller language models from generative larger language models

It generates precise responses with high overall quality

Scalable for different model families with 120M to 13B parameters

o A 50% smaller model, in terms of parameters, achieves similar or sometimes
better performance than the teacher model.

@ In the case of 90% fewer parameters, it exhibits inferior performance than the
teacher model but is still comparable.
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MiniLLM I

DollyEval Selflnst VicunaEval | S-NI | UnNI

Model  #Params  Method | o)™ e\ | GPT4 RL |GPT4 RL | RL | RL
158 Teacher | 584 27.6 | 429 143 | 486 16.3 | 27.6 | 34.9

- 120M  MiniLlLM | 44.7 24.6 | 20.2 132 | 341 169 | 25.3 | 30.1
340M  MiniLLM | 522 254 | 405 15.6 | 42.6 17.7 | 27.4 | 345

760M  MiniLLM | 547 264 | 446 159 | 457 183 | 29.3 | 37.7

13B Teacher | 70.3 292 | 56.1 184 | 58.0 17.8 | 304 | 36.1

oPT 138 MiniLLM | 60.7 267 | 47.0 14.8 | 50.6 17.9 | 28.6 | 33.4
27B  MinilLM | 63.2 274 | 527 17.2| 559 19.1 | 30.7 | 35.1

678 MiniLLM | 70.8 29.0 | 585 17.5| 60.1 18.7 | 32.5 | 36.7

(LMa  13B Teacher | 79.0 207 | 755 234 651 104|358 | 385
7B MiniLLM | 764 29.0 | 73.1 232 | 641 20.7 | 35.5 | 40.2

Table: Evaluation results. GPT4 and R-L stand for the average GPT-4 feedback scores
and Rouge-L scores across 5 random seeds (Source [16])
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Quantization

Quantization
The number of digits allowed to be used in the mantissa governs the precision of the
value, the exponent governs the range, e.g., 6.02 x 10%® v.s. 6.022140857 x 10%3.

bfloat16: Brain Floating Point Format Range: ~]e=i 10 ~3eit

Exponent 8 bits: Maniissa (Sigificand). 7 bis

fp32: Single-precision IEEE Floating Point Format Range: ~1e<¥to ~3eit
Exponent: 8bis Mantssa (Sgnficand) 23 bis

fp16: Half-precision IEEE Floating Point Format Range: ~5.96"° t0 65504
Exponent 5 bis Mantssa (Sgncand). 10 bits

Figure: floating point formats: bfloat16 (used by BLOOM-176B), float16 (used by
BLOOM-7.1B) and float32®.

Replacing float32 with bfloat16 can shorten the time, and use less memory while
preserving the accuracy4 (models are more sensitive to changes in exponent rather than mantissa).

’https://cloud.google.com/tpu/docs/bfloat16
Shttps://cloud.google.com/tpu/docs/bfloat16
4https ://www.cerebras.net/blog/to-bfloat-or-not-to-bfloat-that-is*the-question/
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Quantization

8-bit optimizer

o Stateful optimizers (e.g., Adam, AdamW, and Momentum) maintain gradient
statistics over time to accelerate optimization = these optimizer states take
33-75% of the total memory footprint during training!

o For 32-bit states, Adam consumes 8 bytes per parameter. That is 8 GB for a
1B parameter model. 8-bit quantization reduces the cost to 2 GB.
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Examples

https://github.com/TimDettmers/bitsandbytes
https://github.com/IST-DASLab/gptq

Model Inference memory Fine-tuning memory
T5-11B 22 GB 176 GB
OPT-66B 132 GB 1,056 GB
BLOOM 176B 352 GB 2,800 GB

* LLM.int8() * 8-bit optimizers
Model Inference memory Fine-tuning memory
T5-11B 11 GB 66 GB
OPT-66B 66 GB 396 GB
BLOOM 176B 176 GB 1,056 GB

Figure: VRAM reduction of 8-bit quantization®.

Shttps://www.youtube.com/watch?v=jy0qtwiry2w
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Moving Towards Data-Centric NLP

e Enhancing data quality offers an alternative approach to scaling up.

@ In low-cost LLMs with limited parameters and resources, high-quality data
becomes even more crucial to compensate for model constraints.

o Related work: "Questioning the Validity of Summarization Datasets and
Improving Their Factual Consistency” in EMNLP 2022 [17].

By filtering out unfactual samples from popular summarization datasets, we
improve the performance of abstractive summarization models while reducing
training time and lowering the need for computational resources.
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Embracing Continual Learning
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Embracing Continual Learning

@ Data are dynamic and evolve over time; keeping LLMs updated is essential to
maintain their relevance and effectiveness.

@ Continuously updating models with new data is more cost efficient than
retraining from scratch.

@ Risks and Challenges: the Curse of Recursion [18]

Typically, training data is sourced from the Internet, which is increasingly
populated with machine-generated content. Recursively training LLMs on
such data can potentially result in language deterioration and linguistic
diversity decrease.
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Conclusion

Conclusion

Large Language Models (LLMs) demand significant resources, leading to high
costs in terms of space, GPU usage, and time consumption.

@ LLMs also have a substantial energy footprint, contributing to environmental
concerns.

@ There is a crucial need to produce smaller Language Models that balance
resource efficiency and performance.

@ Methods for achieving this include:
@ Knowledge Distillation (KD): Transferring knowledge from large models to
smaller ones.
@ Quantization: Reducing the precision of model weights, saving memory.
© Data-Centric NLP.
© Continual Learning
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