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Introduction

Introduction - LIX contributions so far
BERTweetFR [1], a LLM for French tweets

JuriBERT [2], a model for French legal text

SUMM’RE project on meeting summarisation [3]

BARThez [4], a 165M parameters LLM for French that excels at generative
tasks

AraBART [5], a 139M monolingual pre-trained model for Arabic language

GreekBART [6], a 181M parameters LLM for Greek language

FrugalScore [7]: A data-free Knowledge Distillation approach for NLG
evaluation metrics (retaining 96.8% of the performance, running 24 times
faster, and having 35 times less parameters than the original metrics).
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Introduction

Issues with LLMs I

Figure: Overview of popular LLMs in terms of their parameters’ number
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Introduction

Issues with LLMs II

i.e., inference on BLOOM-176B, need 8x80GB A100 GPUs ( $15k each).
fine-tune BLOOM-176B, need 72 of these GPUs!1

Need to reduce these requirements while preserving the model’s performance.
Possible solutions: knowledge distillation, quantization

1https://cloud.google.com/tpu/docs/bfloat16
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Knowledge Distillation

Knowledge Distillation I

A small model (the student) is trained to mimic the predictions of a much
larger pre-trained model (the teacher) [8]–[11]

In distillation, knowledge is transferred from teacher model to the student by
minimizing a loss function
Target: student learns the distribution of class probabilities of the teacher
model.
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Knowledge Distillation

Knowledge Distillation II

Figure: A simplified representation of Knowledge Distillation framework (Source: https:
//towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764)

Iakovos Evdaimon, Yanzhu Guo, Michalis Vazirgiannis (l’X) October 11, 2023 9 / 36

https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764


Knowledge Distillation Why Knowledge Distillation?

Why Knowledge Distillation?

Faster Inference and Lower Latency. Distilled models allow for quick
decision-making, enhancing user experience.

Distilled models often generalize better to unseen data due to the
regularization effect of distillation [12].

Improved Performance on Small Devices with limited computational
resources. Knowledge distillation enables IoT devices to perform complex
tasks.

Reducing the carbon footprint
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Knowledge Distillation Why Knowledge Distillation?

Types of Knowledge I

Response-Based Knowledge
Refers to the neural response of the last output layer of the teacher model.

The main idea is to directly mimic the final prediction of the teacher model.

Figure: Representation of Response-Based Knowledge
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Knowledge Distillation Why Knowledge Distillation?

Types of Knowledge II

Feature-Based Knowledge
The main idea is to directly match the feature activations of the teacher and
the student.

Figure: Representation of Feature-Based Knowledge
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Knowledge Distillation Why Knowledge Distillation?

Types of Knowledge III

Relation-Based Knowledge
Both response-based and feature-based knowledge use the outputs of specific
layers in the teacher model.

Relation-based knowledge further explores the relationships between different
layers or data samples.

Figure: Representation of Relation-Based Knowledge
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Knowledge Distillation Why Knowledge Distillation?

Training Process Overview

Knowledge Transfer: The student model learns from the teacher’s outputs,
aiming to replicate its behavior.

Fine-tuning: After knowledge transfer, the student model is fine-tuned on the
task-specific dataset.
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Knowledge Distillation Why Knowledge Distillation?

Knowledge Distillation Techniques I

Offline Distillation: The knowledge is transferred from a pre-trained teacher
model into a student model.

The teacher is pre-trained before the distillation.

The knowledge is extracted from the teacher model in the forms of logits or
intermediate features, which are then used to guide the training of the student
model.

Online Distillation: Both the teacher and the student are updated
simultaneously and the whole knowledge distillation framework is end-to-end
trainable.

Self-Distillation: The same networks are used for the teacher and the
student models. One way to apply self-distillation is to transfer knowledge
from the deeper sections of the network into its shallow sections.
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Knowledge Distillation Why Knowledge Distillation?

Knowledge Distillation Techniques II

Figure: Knowledge Distillation Methods [13]
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Knowledge Distillation State of the Art

State of the Art

DistilBERT [14]

Distilled GPT-3.5 for source code summarization [15]

MiniLLM [16]
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Knowledge Distillation State of the Art

DistilBERT

A 40% smaller BERT model pre-trained leveraging knowledge distillation via
the supervision of BERT-base model.

Retaining 97% of BERT-base model’s language understanding capabilities
and being 60% faster.

Figure: Illustration of knowledge distillation during the pre-training of DistilBERT
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Knowledge Distillation State of the Art

Distilled GPT

A distilled GPT-3.5 model for a specific task, the source code summarization.

The model is small enough (350M parameters, so 0.2% of the GPT-3.5 in
terms of parameters number) to be run on a single 16 GB GPU (can be run
locally).

Capable of mimicking GPT-3.5 on this task. Based on the conducted human

evaluation a slight preference favoring GPT-3.5 in direct comparisons by
participants (52% GPT-3.5, 46% distilled, 2% undecided)
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Knowledge Distillation State of the Art

MiniLLM I

Support for multiple LLMs (currently LLAMA, BLOOM, OPT) at various
model sizes (up to 170B parameters)

It distills smaller language models from generative larger language models

It generates precise responses with high overall quality

Scalable for different model families with 120M to 13B parameters

A 50% smaller model, in terms of parameters, achieves similar or sometimes
better performance than the teacher model.

In the case of 90% fewer parameters, it exhibits inferior performance than the
teacher model but is still comparable.
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Knowledge Distillation State of the Art

MiniLLM II

Model #Params Method DollyEval SelfInst VicunaEval S-NI UnNI
GPT4 R-L GPT4 R-L GPT4 R-L R-L R-L

GPT2

1.5B Teacher 58.4 27.6 42.9 14.3 48.6 16.3 27.6 34.9

120M MiniLLM 44.7 24.6 29.2 13.2 34.1 16.9 25.3 30.1

340M MiniLLM 52.2 25.4 40.5 15.6 42.6 17.7 27.4 34.5

760M MiniLLM 54.7 26.4 44.6 15.9 45.7 18.3 29.3 37.7

OPT

13B Teacher 70.3 29.2 56.1 18.4 58.0 17.8 30.4 36.1

1.3B MiniLLM 60.7 26.7 47.0 14.8 50.6 17.9 28.6 33.4

2.7B MiniLLM 63.2 27.4 52.7 17.2 55.9 19.1 30.7 35.1

6.7B MiniLLM 70.8 29.0 58.5 17.5 60.1 18.7 32.5 36.7

LLaMA 13B Teacher 79.0 29.7 75.5 23.4 65.1 19.4 35.8 38.5

7B MiniLLM 76.4 29.0 73.1 23.2 64.1 20.7 35.5 40.2

Table: Evaluation results. GPT4 and R-L stand for the average GPT-4 feedback scores
and Rouge-L scores across 5 random seeds (Source [16])
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Quantization

Quantization
The number of digits allowed to be used in the mantissa governs the precision of the
value, the exponent governs the range, e.g., 6.02× 1023 v.s. 6.022140857× 1023.

Figure: floating point formats: bfloat16 (used by BLOOM-176B), float16 (used by
BLOOM-7.1B) and float323.

Replacing float32 with bfloat16 can shorten the time, and use less memory while
preserving the accuracy4 (models are more sensitive to changes in exponent rather than mantissa).

2https://cloud.google.com/tpu/docs/bfloat16
3https://cloud.google.com/tpu/docs/bfloat16
4https://www.cerebras.net/blog/to-bfloat-or-not-to-bfloat-that-is-the-question/
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Quantization

8-bit optimizer

Stateful optimizers (e.g., Adam, AdamW, and Momentum) maintain gradient
statistics over time to accelerate optimization ⇒ these optimizer states take
33-75% of the total memory footprint during training!

For 32-bit states, Adam consumes 8 bytes per parameter. That is 8 GB for a
1B parameter model. 8-bit quantization reduces the cost to 2 GB.
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Quantization

Examples
https://github.com/TimDettmers/bitsandbytes
https://github.com/IST-DASLab/gptq

Figure: VRAM reduction of 8-bit quantization5.

5https://www.youtube.com/watch?v=jyOqtw4ry2w
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Moving Towards Data-Centric NLP

Moving Towards Data-Centric NLP

Enhancing data quality offers an alternative approach to scaling up.

In low-cost LLMs with limited parameters and resources, high-quality data
becomes even more crucial to compensate for model constraints.

Related work: ”Questioning the Validity of Summarization Datasets and
Improving Their Factual Consistency” in EMNLP 2022 [17].

By filtering out unfactual samples from popular summarization datasets, we
improve the performance of abstractive summarization models while reducing
training time and lowering the need for computational resources.
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Embracing Continual Learning

Embracing Continual Learning

Data are dynamic and evolve over time; keeping LLMs updated is essential to
maintain their relevance and effectiveness.

Continuously updating models with new data is more cost efficient than
retraining from scratch.

Risks and Challenges: the Curse of Recursion [18]

Typically, training data is sourced from the Internet, which is increasingly
populated with machine-generated content. Recursively training LLMs on
such data can potentially result in language deterioration and linguistic
diversity decrease.
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Conclusion

Conclusion

Large Language Models (LLMs) demand significant resources, leading to high
costs in terms of space, GPU usage, and time consumption.

LLMs also have a substantial energy footprint, contributing to environmental
concerns.

There is a crucial need to produce smaller Language Models that balance
resource efficiency and performance.

Methods for achieving this include:
1 Knowledge Distillation (KD): Transferring knowledge from large models to

smaller ones.
2 Quantization: Reducing the precision of model weights, saving memory.
3 Data-Centric NLP.
4 Continual Learning
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