

WP4 LLM for medical triage

Dr Ivan Lerner

Assistant Hospitalier Universitaire Département d'informatique médicale, HEGP Université Paris Cité

Team

- LORIA
 - Emmanuel Vincent, Senior Research Scientist
 - Gaël Guibon, Associate Professor
- AP-HP
 - Medical Informatics
 - Dr Ivan Lerner
 - Emergency Department
 - Dr Gustave Toury
 - SAMU 93
 - Pr Frédéric Lapostolle
- LINAGORA

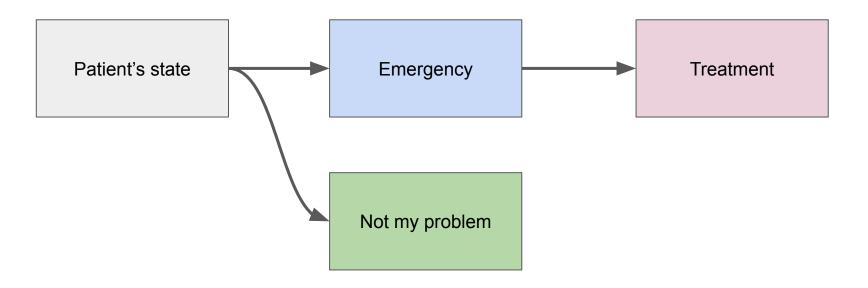
Plan

- About emergency medicine
- About call triage
- The long term objective
- The problem we can solve
- How we plan to do it

About emergency medicine

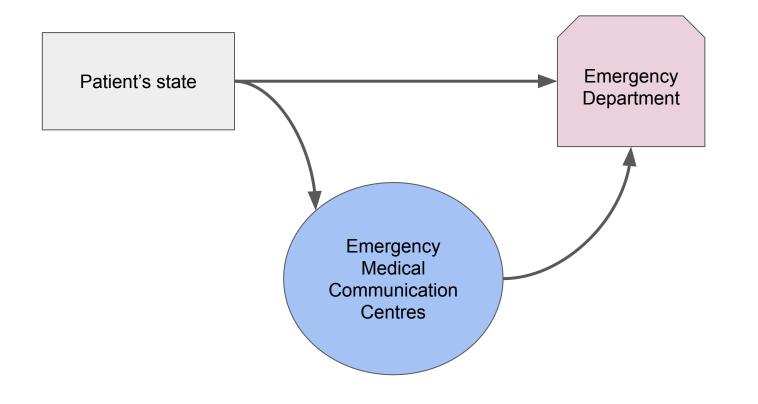
Classical medicine

Emergency medicine



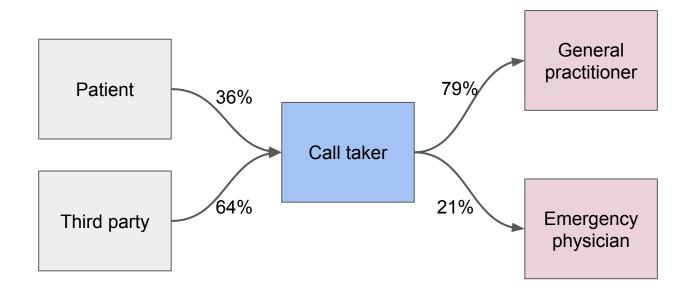
About call triage

Patient pathways

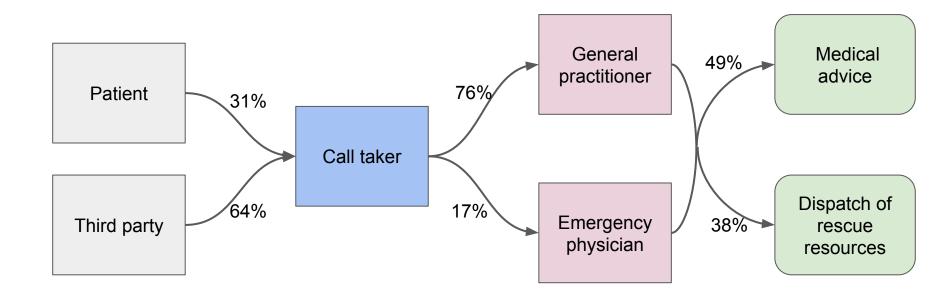


4 All

Emergency Medical Communication Centres (France)



Emergency Medical Communication Centres (France)



SAMU 92

1.6 millions inhabitants

9 months study

108 548 calls

58% women

aged 38 [18 - 66] years old

64% call made by a third party

84% call from home

SAMU 92

Reason for calls	% Calls
Cardiology	37
Other	29
Medical other	19
Trauma	8
Respiratory	4
Neurology	2
Psychiatry	1
Intoxication	<1
Death	<1

Facteurs impactant la durée de communication dans un EMCC.M Bensoussan, F Lapostolle, Paul-Georges Reuter, under review

SAMU 92

79% calls oriented toward general practitioner

49% calls led to medical advice

38% calls led to dispatch of rescue resources

Doctor decision made in 3 [2-4] minutes

The accuracy of medical dispatch

Study	Country	Decision system	Outcome	Paramedics reference	Recall (%)	Precision (%)
Ball, 2016	Australie	MDPS	Life-threatening emergency	Triage decision	93.3	5.85
Dami, 2015	Suisse	CBD	Life-threatening emergency	NACA > 3	86	21.7
Moser, 2017	Suisse	CBD	Life-threatening emergency	NACA > 3	86.8	29.2
Leopardi, 2013	Italie	Autre	Vital emergency requiring a doctor's intervention	Local score	78	36.6
Ek, 2013	Suède	CBD	Urgence vitale et non vitale	METTS-A red/orange/yellow	94.5	88.5
Medical Priority Dispatch System (MDPS) Criteria Based Dispatch System (CBDS)		Bohm K, Kurland L. The accuracy of medical dispatch - a systematic review. Scand J Trauma Resusc Emerg Med. 9 nov 2018;26(1):94.				

Dialogue example

M : bonjour madame, je suis le docteur DAMANI le médecin régulateur heu votre fille nous a appelé parce que vous avez une douleur au niveau de la poitrine

P:c'est ça

M : qui est apparue depuis il y a quinze vingts minutes, heu est ce que vous avez des problèmes de santé?

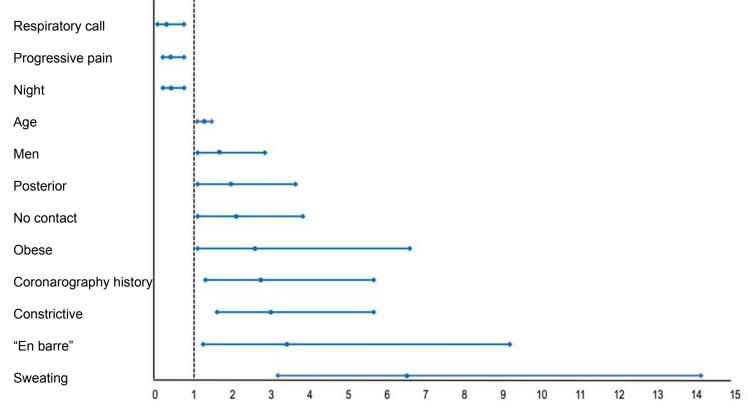
P : heu vous savez un peu de cholestérol, un peu d'hypertension voilà, fin des trucs de base quoi hein

- M : est ce que vous avez déjà fait un infarctus?
- P : je pense pas. infarctus, c'est quoi ça?
- M : les artères bouchées au niveau du cœur
- P : heu non non non moi non. mais mon fils heu oui oui
- M : votr- heu votre fils. mais vous non?

P : heu et donc là vous avez mal. donc ça fait quinze minutes c'est toujours pas parti la douleur n'est n'est pas passée

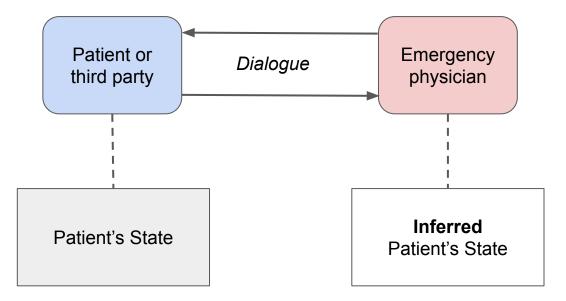
- M : heu est ce que ça serre au niveau de la poitrine?
- P : heu ça serre pas non ça serre pas

Thoracic pain characteristics and triage decision

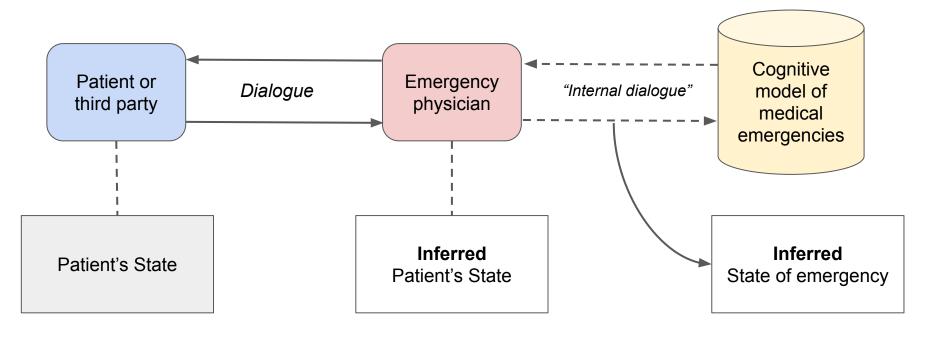


Decision making in EMS Emergency physician facing calls for chest pain. The REDOUT Study. Reuter Paul-Georges, Lapostolle Frédéric

A high-level model of medical triage



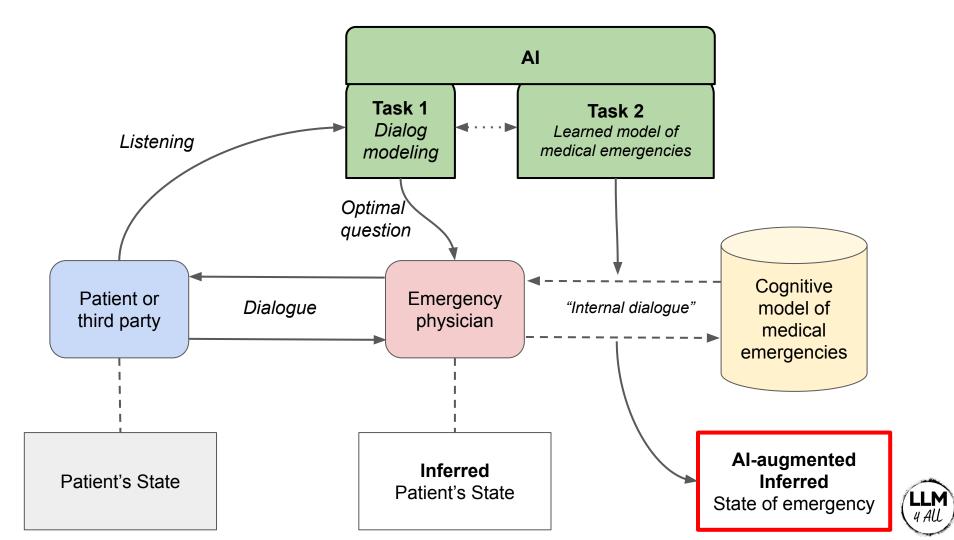
A high-level model of medical triage



high dimensional

low dimensional

The long term objective



AI tasks

Task 1

• What is the set of optimal questions, given the context (previous utterances), that maximises the accuracy of the inferred state of emergency with minimum cardinality

Task 2

• What is the level of emergency from observations of a given patient's state

Ideal dataset and best dataset

Ideal : infinitely large dataset of triage calls

- each dataset item is: a dialogue, a ground truth "level of emergency"
- learn a function f, f(dialogue) = ground truth "level of emergency"
- multi-class supervised problem

Best : large multicentric dataset of triage calls, linked with SNDS

- proxy for a ground truth "level of emergency"
 - medical triage decision
 - call back
 - death, hospitalisation within 2 weeks (probabilistic link with SNDS)
- each dataset item is: a dialogue, a proxy "level of emergency"

Average physician cognitive model

Beyond physician cognitive model

The problem we can solve

The datasets we have now

Simulated triage calls

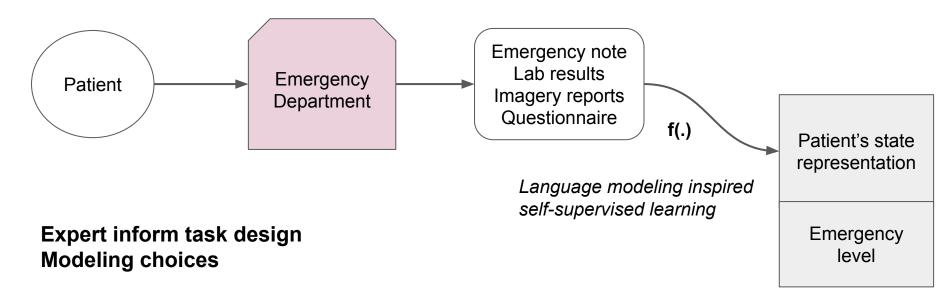
- 3 hours 24 minutes
- 61 calls
- 3077 utterances

HEGP Emergency Visits

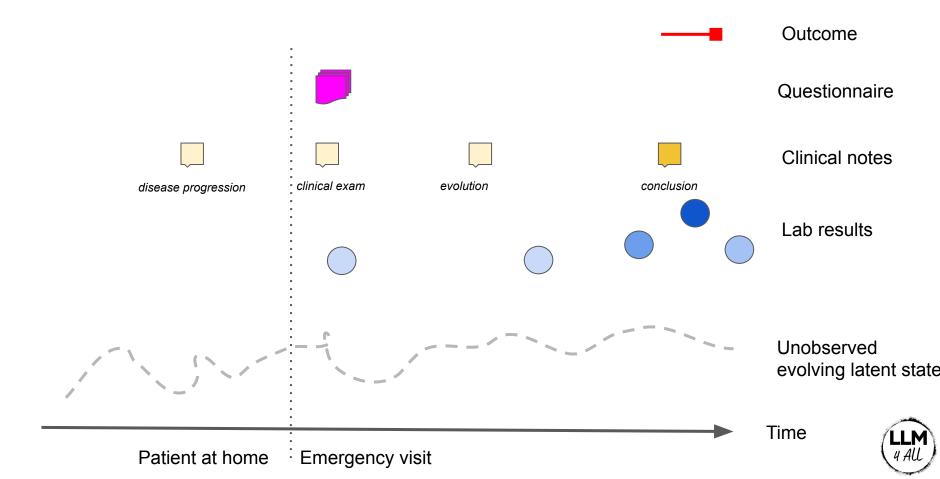
- > 100k visits
- patient's state
 - emergency note
 - lab results
 - imagery reports
 - questionnaire
- level of emergency
 - physician decision from encounter
 - hospitalisation, death

Relevant for NLP

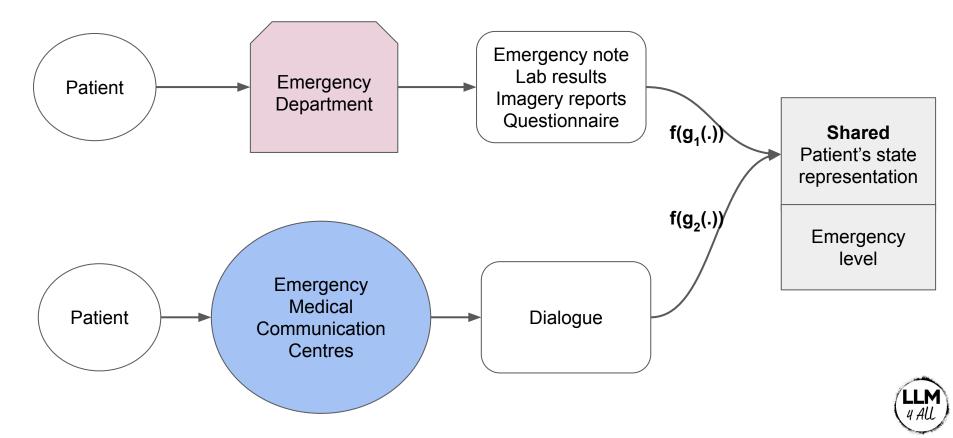
Problem 1: Learning a patient's state representation



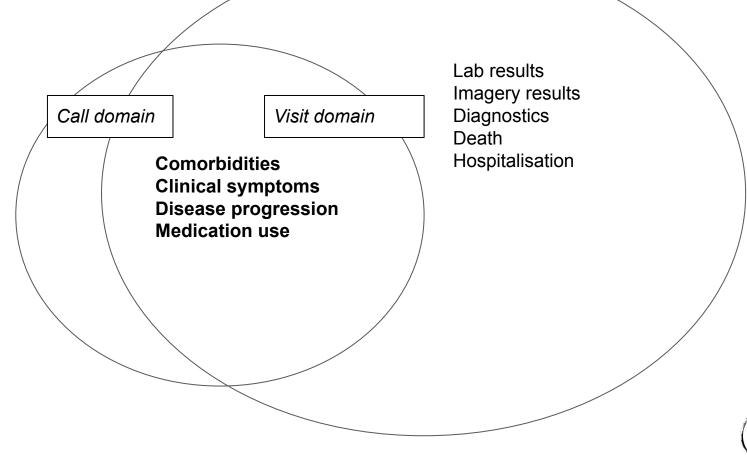
Next-token or masked token prediction



Problem 1bis: Aligning calls / visits representations

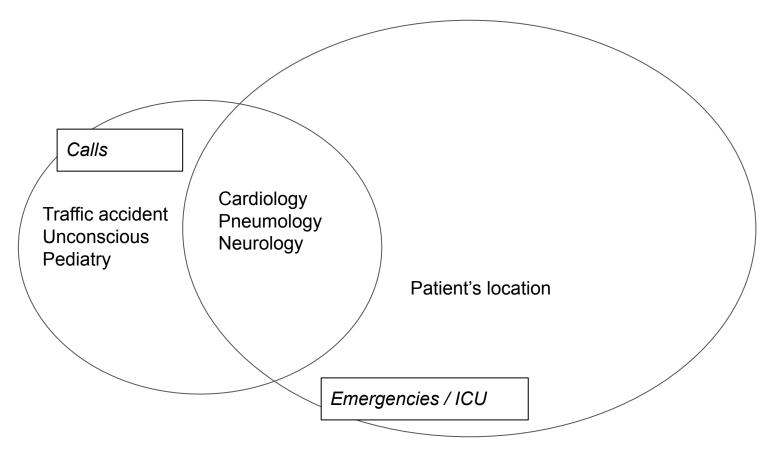


Calls / Visits input space



4 All

Calls / Visits patient's state distribution overlap



Problem 2: augmented call triage dialogue modeling

Learning a dialogue model

- learn **m**(previous utterances) = next utterance
- in the call triage domain

Augment the dialogue model with the patient's state model

- *inferred patient's state* = **f**(**g**₂(previous utterances))
- learn m(previous utterances, inferred patient's state) = next utterance

How we plan to do it Some ideas, open discussion

Everything is language modeling: one model, one self-supervised task

Transform all data into tokens

- discretize continuous variables...
- engineer sentences for UMLS graph relations

Add temporal embeddings, and variable type embeddings

Jointly fine tune an LLM on:

- pseudo medical tokens datasets
- medical call triage
- open source medical ressources datasets (e.g. from Dr Bert paper)

2 models:1 dialog model, 1 patient's state model

Learn a patient's state model, jointly on the call / visit domain

Infer patient's state on the call dataset

Finetune a dialog model with extended input inferred patient's state

Engineer everything

Define an expert-based set of variables to extract, structure, normalize

Information extraction and entity linking:

- visit domain (notes)
- call domain

Feature engineering, feature selection and statistical modeling

Thank you for your attention !