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About emergency medicine



Classical medicine

Patient’s state Diagnosis Treatment



Emergency medicine

Patient’s state Emergency Treatment

Not my problem



About call triage
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SAMU 92

1.6 millions inhabitants

9 months study

108 548 calls

58% women

aged 38 [18 – 66] years old

64% call made by a third party 

84% call from home 

Facteurs impactant la durée de communication dans un EMCC.M Bensoussan, F Lapostolle, Paul-Georges Reuter, under review



SAMU 92

Facteurs impactant la durée de communication dans un EMCC.M Bensoussan, F Lapostolle, Paul-Georges Reuter, under review

Reason for calls % Calls

Cardiology 37

Other 29

Medical other 19

Trauma 8

Respiratory 4

Neurology 2

Psychiatry 1

Intoxication <1

Death <1



SAMU 92

Facteurs impactant la durée de communication dans un EMCC.M Bensoussan, F Lapostolle, Paul-Georges Reuter, under review

79% calls oriented toward general practitioner

49% calls led to medical advice

38% calls led to dispatch of rescue resources

Doctor decision made in 3 [2-4] minutes



 The accuracy of medical dispatch
Study Country Decision 

system
Outcome Paramedics reference Recall (%) Precision (%)

Ball, 2016 Australie MDPS Life-threatening emergency Triage decision 93.3 5.85

Dami, 2015 Suisse CBD Life-threatening emergency NACA > 3 86 21.7

Moser, 2017 Suisse CBD Life-threatening emergency NACA > 3 86.8 29.2

Leopardi, 2013 Italie Autre Vital emergency requiring a 
doctor's intervention

Local score 78 36.6

Ek, 2013 Suède CBD Urgence vitale et non vitale METTS-A red/orange/yellow 94.5 88.5

Medical Priority Dispatch System (MDPS)
Criteria Based Dispatch System (CBDS) 

Bohm K, Kurland L. The accuracy of medical dispatch - a systematic 
review. Scand J Trauma Resusc Emerg Med. 9 nov 2018;26(1):94.



Dialogue example



Thoracic pain characteristics and triage decision

Decision making in EMS Emergency physician facing calls for chest pain. The REDOUT Study. Reuter Paul-Georges, Lapostolle Frédéric

Respiratory call

Progressive pain

Night

Age

Men

Posterior

No contact

Obese

Coronarography history

Constrictive

“En barre”

Sweating



A high-level model of medical triage
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A high-level model of medical triage

Patient’s State Inferred 
Patient’s State

Patient or 
third party
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Dialogue
Cognitive 
model of 
medical 

emergencies

“Internal dialogue”

Inferred 
State of emergency

high dimensional low dimensional



The long term objective
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AI tasks

Task 1

● What is the set of optimal questions, given the context (previous utterances), 
that maximises the accuracy of the inferred state of emergency with minimum 
cardinality

Task 2

● What is the level of emergency from observations of a given patient’s state 



Ideal dataset and best dataset

Ideal : infinitely large dataset of triage calls

● each dataset item is: a dialogue, a ground truth “level of 
emergency”

● learn a function f, f(dialogue) =  ground truth “level of emergency”
● multi-class supervised problem

Best : large multicentric dataset of triage calls, linked with SNDS

● proxy for a ground truth “level of emergency”
○ medical triage decision 
○ call back
○ death, hospitalisation within 2 weeks (probabilistic link with SNDS)

● each dataset item is: a dialogue, a proxy “level of emergency”

Average physician 
cognitive model

Beyond physician 
cognitive model



The problem we can solve



The datasets we have now

Simulated triage calls

● 3 hours 24 minutes
● 61 calls
● 3077 utterances

HEGP Emergency Visits

● > 100k visits
● patient’s state

○ emergency note
○ lab results
○ imagery reports
○ questionnaire

● level of emergency
○ physician decision from encounter
○ hospitalisation, death

Relevant for medical questionsRelevant for NLP



Problem 1:  Learning a patient’s state representation

Language modeling inspired 
self-supervised learning

Miotto, Riccardo, et al. "Deep patient: an unsupervised representation to predict the future of patients from the electronic health records." Scientific reports 6.1 
(2016): 1-10.

Expert inform task design
Modeling choices

Emergency 
Department

Patient

Emergency note
Lab results

Imagery reports
Questionnaire

Patient’s state 
representation

Emergency 
level

f(.)



Next-token or masked token prediction

Time

Unobserved 
evolving latent state

Emergency visitPatient at home

Lab results

Clinical notes
disease progression clinical exam evolution conclusion

Questionnaire

Outcome



Problem 1bis:  Aligning calls / visits representations

Emergency 
Department

Patient

Emergency note
Lab results

Imagery reports
Questionnaire Shared

Patient’s state 
representation

Emergency 
level

Patient Dialogue

Emergency 
Medical 

Communication 
Centres 

f(g2(.))

f(g1(.))



Calls / Visits input space

Comorbidities
Clinical symptoms
Disease progression
Medication use

Lab results
Imagery results
Diagnostics
Death
Hospitalisation

Call domain Visit domain



Calls / Visits patient’s state distribution overlap

Traffic accident
Unconscious
Pediatry

Cardiology
Pneumology
Neurology

Patient’s location

Calls

Emergencies / ICU



Problem 2: augmented call triage dialogue modeling

Learning a dialogue model

● learn m(previous utterances) = next utterance
● in the call triage domain 

Augment the dialogue model with the patient’s state model

● inferred patient’s state = f(g2(previous utterances))
● learn m(previous utterances, inferred patient’s state) = next utterance



How we plan to do it
Some ideas, open discussion



Everything is language modeling: 
one model, one self-supervised task

Transform all data into tokens 

- discretize continuous variables…
- engineer sentences for UMLS graph relations

Add temporal embeddings, and variable type embeddings

Jointly fine tune an LLM on:

- pseudo medical tokens datasets
- medical call triage
- open source medical ressources datasets (e.g. from Dr Bert paper)



2 models: 
1 dialog model, 1 patient’s state model

Learn a patient’s state model, jointly on the call / visit domain

Infer patient’s state on the call dataset

Finetune a dialog model with extended input inferred patient’s state



Engineer everything

Define an expert-based set of variables to extract, structure, normalize

Information extraction and entity linking:

- visit domain (notes)
- call domain

Feature engineering, feature selection and statistical modeling



Thank you for your attention !


